Poster Showing Control and Tuning of Molecular Organization in Vapor-Deposited Glasses Presented at Gordon Conference by MRSEC Graduate Student

Camille Bishop, a 5th-year graduate student working in Mark Ediger’s group as part of the MRSEC IRG 1, presented her work on liquid crystal-like order in vapor-deposited glasses at the Gordon Conference on Liquid Crystals in New London, NH that took place from July 7th-12th, 2019. The conference brings together researchers in a diverse range of disciplines involving liquid crystal science and technology.

(2019) Strain Mapping with a Fast TEM Camera

The Wisconsin MRSEC is developing an ultrafast direct electron camera for use on a scanning transmission electron microscope (STEM) in its Shared Instrument Facilities. One application of the camera will be experiments to map strains – tiny variations in the distance between atoms – inside materials caused by defects in the crystal lattice or interfaces between two different materials. The MRSEC acquired an existing, slower camera to support technique development before the new camera arrives. An example strain map is shown to the right. The gray-scale image is a small Nb particle formed inside a larger Zr crystal. The color image shows the rotation of the Zr lattice caused by the interface between the two materials. Higher sensitivity maps covering larger areas with more points will be possible with the new camera.

(2019) Design Rules for Soft Materials with Integrated Natural and Synthetic Building Blocks

Bacteria communicate via molecular signals that they produce in high concentrations. Bacterial communication promotes the formation of biofilms that can be harmful to humans and costly to industry. We have shown that collections of individual bacterial signaling molecules interact in water to form soft materials (“self-assemble”) with spherical, layered, or cylindrical structures. Simulation images showing the formation of a spherical structure (“micelle”) are shown with corresponding experimental images.

(2019) Atomic and Electronic Structure of a Heusler Alloy

Heusler compounds are promising materials for next generation devices for direct conversion of heat to electricity (thermoelectricity) and for magnetic computer memory. Performance in these applications depends sensitively on the arrangement of the atoms and the behavior of electrons, both of which are hard to predict and harder to control for Heuslers. We have grown thin films of FeVSb, a new Heusler compound, using molecular beam epitaxy, a kind of spray painting with “cans” of different atoms. The top picture is an electron microscope image showing the arrangement of the Fe, V, and Sb as different size dots. On the right, the image shows the material we want, FeVSb. On the left, there is a completely new, unexpected material, Fe2VSb, which is a new kind of magnet.

(2019) Reaching Underserved Audiences by Bringing Science to a Local Food Pantry

Not all members of our community have the time or resources to attend science outreach events. To reach some of those people, the Wisconsin MRSEC conducts its engaging, hands-on science activities to a local food pantry. Customers can wait up to 90 minutes at the food pantry, providing ample time for educational activities for kids, their parents, and other curious adult visitors. By bringing science and engineering activities to the food pantry, the Wisconsin MRSEC forms connections with and helps inspire a new, diverse audience composed entirely of economically disadvantaged members of the community.