(2023) Stress-Driven Rotating Lattice in Lateral Solid-Phase Complex Oxide Crystallization

Complex oxide materials have useful electronic, magnetic, and optical properties arising from their versatile composition and crystallographic structure. Wisconsin MRSEC researchers have investigated new methods for the crystallization of complex oxides. They have found that the crystallization of amorphous complex oxide layers from isolated seed crystals presents the opportunity to remove geometric constraints posed by previous thin film epitaxial growth methods on single-crystal substrates.

(2023) Guiding Nanoscale Crystallization of Amorphous Solids

MRSEC researchers have found similar phenomena in systems as diverse as amorphous water (the glassy form of ice) and chalcogenides. These various materials have applications spanning electronics, catalysis, and medicine, so the discovery of common features in their crystallization has potential impact far beyond the IRG’s original work in metal oxides.

(2023) MRSEC Members Introduce Materials Science to First Gen Students

Wisconsin MRSEC scientists created an interactive experience to engage high school students participating in the UW-Madison PEOPLE pre-college program with materials research. PEOPLE provides longitudinal support to first-generation college students from historically marginalized and underrepresented groups. Attendees had expressed interest in STEM fields, but for most, this was their first interaction with materials science.

(2023) Toward White LED Light with a New Substrate

Wisconsin MRSEC researchers have developed a new way to synthesize one possible substrate, ScAlMgO4, by depositing it at low temperature, then crystallizing it. Now, the team has developed the ability to grow high-In InGaN on top of ScAlMgO4 using the industry-standard metal-organic chemical vapor deposition process. The films are smoother than films grown on free-standing ScAlMgO4 substrates, which is a critical prerequisite to devices including LEDs, other optoelectronics, and highspeed electronics. The team has developed an InGaN-based green LED device on a conventional substrate that will yield yellow to red light when grown at higher In content on ScAlMgO4.